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ABSTRACT

This article is intended to provide researchers spe-/l%
cializing in scientific radio electronics, with an
exact theoretical up-to-date analysis on the very
essential (especially for us) subject of the study
of the microwave propagation conditions through
the troposphere, especially in the case in which
transmitter (source) and receiver (point of ob-
servation) are in line of-sight contact. In the
following development mainly the latest works of
Soviet scientists were taken into consideration
(L. A. Chernov, V. A. Krasilnikov, V. I. Tatarski,
A. M. Obukhov, A. N. Kolmogorov, and L. D. Landau)
through which the rather exact and mathematically
disciplined statistical description of the prop=-
agation medium was achieved. Many original re-
lated works, determining similar parameters and
attributed to the first who dealt with the prob-
lem (H. G. Booker, W. E, Gordon, K. Bullington,

C. L. Pekeris, A. Wheelon, H. Staras, F. Villars,
V. F. Weisskoopf, E. G. S. Megaw, R. A. Silver-
man, etc.) result as special cases (by special
choice of the turbulence spectrum in each case)
of the general theoretical concepts developed
below.

‘Introduction

The problem of electromagnetic wave scattering by the lower layers of
the atmosphere owes its development basically to the fact that the phenome-
non uncovered the possibility of radioelectric connection, on the range of

*Numbers given in the margin indicate the pagination in the original foreign
text.
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approximately 50 - 10 000 %5, of points situated beyond the optical horizon.

However, the concept of "optical horizon" (except in some cases of veryl
long or very short coupling) must be studied statistically: depending
upon the instantaneous value of the equivalent slope* of the refraction index
in the region of coupling, the conformally transformed earth radius is pos-
sometimes able to allow line of sight contact of the two points to be joined
and sometimes not. Thus it is possible (and this is only experimentally '
proven) for a radioelectric coupling of medium length to be considered for a
certain percentage of time as "tropospheric beyond the horizon" and for the
rest of the study time as coupling "of long line of sight contact'". Either
way, the nature of the problem does not change: in small distances the pri-
mary field to the receiver is, depending on the occasion, the one that cor-
responds to the level of free space, or that corresponding to the reduction
due to refraction over the surface of the Earth. 1In the first case the field
reduces proportionally to the square of the distance L between transmitter
and receiver, in the second,approximately expomentially to it.

On the other hand the field due to scattering®#* which for small distances
superimposed on the main component gives the fluctuation about the mean value,
which the main component determines, decreases mainly linearly*®* with the
distance L for line of sight connection, and proportional to L® for couplings
beyond the horizon. It is, therefore, obvious that as long as the length of
coupling gradually increases, there develops for each of the above cases a
limit L., (faster for the beyond the horizon case and much later for the
case of the line of sight connection) for which the levels of the main compo-
nents for each case contribute to the formation of the instantaneous value of
the field of reception under the same or relative range of magnitude to the com-
ponent due to scattering. 1In the region of this limit the experimentally
proven,statistical morphology of the field amplitude and phase fluctuationy
being directly dependent for a given frequency upon the dimension of the
turbulence scale, gives valuable information on the '"propagation mechanism"
for each case.

% See reference P. Misme '"Le Gradient Equivalent" Annales des, telecommunica-
tions, vol. 15, Nos. 3-4, March-April 1960,

Also J. Nikolis "On the conditions of propagation of electromagnetic radia-
tion through the troposphere. Correlation of radioelectrical and radio-
meteorological papameters', these for doctorate, June 1962.

#% Tt is understood to mean scattering in the troposphere. The problem of
electromagnetic radiation scattering by a rough reflective surface (sea,
ground) «will be dealt with. in our forthcoming article containing special
experimental work.

*%%See below.



PART A.

DETERMINATION OF THE EQUIVALENT SCATTERING CROSS
SECTION FOR THE ELECIROMAGNETIC RADIATION PROPAGATION
THROUGH TURBULENT TROPOSPHERE

The problem of electromagnetic wave scattering through nonhomogeneous /2
and nonisotropic atmosphere is stated as follows: a plane monochromatic
electromagnetic wave is incident on an atmospheric volume V; due to the exist-
ing distributions* of the refraction index inside this volume resulting from
turbulence, the oncoming wave is being scattered (i.e. being diffracted).

It is required to find the equivalent surface of scattering** (or the
mean density of the scattered radiation) in a given direction ¢, 8.

We will assume that the distribution of the refraction index n(¥) inside
the volume V is statistically "random" and independent of time.

A, Assume that the conductivity of the troposphere is zero and its
(relative) magnetic permeability is unity.

The Maxwell equations under these conditions are written:

Y opot E = jkﬁ (1)}
. rotﬁ:—jksE (2)
divsE= 0 (3.
where k = 4L = zﬂ, s, the relative dialectric constant and E, H the amplitude

of the electric and.magnetic field, respectively..

Taking rot = Cure of both sides of equation (1) above and substituting
from (2) we get:

Py T

N : -v’-E-{— grad . duwk = K. s L.
since | diveE = s.di E+ E.grade = 0.
we have . divE =—E grad . logs

* See below

%% Meaning the per unit of solid angle, unit of scattering volume and unit of
incoming power density, power of reception.



and since s = n? (r) we finally get:

'E-—‘;tﬂ n.E""Zg'“d(L grad . logn) =0 OF

e R A [T ———

We assume that the fluctuations of the refraction index n are small,
i.e [ ng - n f<<l If we call n; the deviation of n from the mean value:

n = ﬁ + nl, since n ¥ 1%, replacing the n in Eq. (4) by 1 + nj we get: .

P P E+ B E = — 2grad (E . grad  log [14n,] )=
: _—2.K.n E—k W E ).

. [ -

To solve Eq. (5) we put:

g e e

Z'::.E'o"}‘it‘{‘iﬁ—*' Lt (5)

where the nth term has the order of magnifude n? (Born's approximation). Sub-
stituting in Eq. (5) and equating to zero each group of terms of the same
order of magnitude we obtain:

g e

ViE K Ee =0 (6"
v’ E, K L, = — 2k"n, Lo = Zgrad (L‘ grad n‘) (7) '.

e

——

In Eq. (7) the quantity log (1 + nl) which appears in Eq. (5) has been
expanded 1n the powers of nj, i.e.

T g
n,

lOJ(‘l"'”l).——ni—_f '__.V'A.

The quantity E, represents the amplitude of the field strength of the on=-
coming wave which, 31nce it was taken as plane is E, = Ay * eJKE, The quan-
tity E, represents the amplitude of the scattered wave (the terms Ez cessss are
omitte% due to their infinitesimal size).

% The value n~l1 near the ground is of the order of magnitude ’\’3.10-4.



The solution now of the equation §72¢ (r) + k2 . () = £(¥) (which
corresponds to the outgoing waves) is of the form

Jkl?-—?l

. 8
w(:)**-*-ff(r) -l—::—-—;"‘]dv @

S

.

where r' is the variable vector which originates at the zero of the coordi-
nate system which we place inside the volume of diffusion - in different
points of this volume.

If the point of observation ¥ is located at a great distance from the
volume V as compared to the dimensions of this volume then for all the values
r' the quantity |r - r'| is approximately constant and equal to r =

Under these conditions the quantlty |t = r'| can be expanded in a power
series in the ratio L, i.e.:
r

l r—r l = =30 7 +""T7‘""(" r ) ]+" - where %= —7;;-

the unit vector drawn from the origin of the coordinate system (1n31de the
volume V) towards the point of observation. If the relation:

Lk [}'u—(‘a: r>] wi W

is valid for all the values of r', i.e. if the dimensions L of the scatter-
ing volume satisfy the condition J.r >> Lz, then

1 eJkrf-—T'l uejk(r——.so';') & .

P NI

Further, substituting in the denominator of equation (8) |r - x'|"r
we get: ‘ '

-—jkba" g 9)
i f . T



Using now relation (9) to solve (7) we get

T Jer R

= k? 4 el = Jike o kDo l')dvl+

B )= —;.“"fn; ()BT AV
oy . R

¥ Jer - —— - ) —
, : K P e TTR |re
+_21_. e .fgrad (e'®F Aygradn,(*)).e o
EIEY

v

av’ (10y ‘ /3

The second integral of (10) is being transformed by making use of Gauss'
theorem:

: fu‘gradtp.dV' = fqa.u do— fqa.gradu.dV'
s v ‘

4

where s is the surface surrounding the volume V and do an element of this
surface. '

The surface integral is equal to zero as long as the surface of inte-
gration can be extended beyond the limits of the volume V. Since:

— Ko £ . = =JkBoer
grad . € 0 F = = jhidse .

we have:
, f grad (¢ V5T A, gradn, (7)) . e avi=
. X v ‘ —_— —— .
o =gk Z..f(' gradn, (') ),q’.“‘ ko) gy
. v "_;_ o
. .
then:
T Llji;y_nfp‘-‘ :
- v - T (k=% .03 .
EO =T A [, o R T gy
i i v . .
i L o
' ne = = - i A Py :
+J2m- + 8ge fA,gradn,(r’) , & RTKBIE g0 ;
v




- jkr . Jer :

’ ot . & ] 1 ke -

or , E(ry= e € o dod e ¢34+ 00 l (11)'

where: j¢;=fm(17)-e“k'k."’°) ®oay L1y
' v

and =y [orean . EITay

v

Both the terms of (11) represent spherical waves the amplitude and phase
of which depend on the fluctuation of the refraction index n,(r'), inside the
volume V. The second term describes a longitudinal electrical field. If we
transform the expression for c,, by making use of Gauss' theorem, we get:

o 2,, fn.(-;’) .grad[ ej (=l 9g) #* ] av
. : .

but: grad kR da e 7 U= k3y) oAk e :
co: e f= i FG—1) A, [n(7), 6! EEWT gy
B v

= Jjkue, 4,

Therefore, the scattered wave is purely transversal.
B. Calculate the flux density of the scattered energy.

The indicated value of the energy density during one period is

’ ¥  S§=c_ .Re [Eq Hp*1,
s 8w
From relations (11) and (1) we get:

i . ' . Jer o s\ "
= K.y e - ___‘C,,_*- e

% H(r)= T rot ( pal 4, )""__2::/'1‘. dq grad - /

i

1

f

o ke | Jkr L’. jkr
AR e ._-6’ o= '.C‘.e—a——‘iz‘
"2::;';:'( k=5 )“’,"‘4“-’“—— T 100 de (12)

ar

neglecting the term el
r
stituting (11) and (12) in the relation which gives the flux density S we get:

in accordance with the assumption made above. Sub-



c. k
32a0,
1 ) ck‘ e
| Smes

S= ;e do  (Body) =

[a‘, (g Ay —dy . (3 '{1.0) ] |

Towards the direction §, the flux density will be equal to;

. . - P L L L T . . o - . -.2 R .

: - =~ e, e ¥ - c.ktsin ¥

. ‘t Sy=28.4,= L b [Ag ~{dq» A)"J e ey .c‘.o,“
“‘ ’ . . .- .

32n%r?

where x is the angle between Zo and Eo and KOZ =1

Substituting the value of c; from (11)', we get:

f. ¢.kt.sin J(L—kbﬂCn—n)
Sy =g f f m(r) ma () e Ty 4V, (127

o oy b aoan s e v i e ousaea—es - amannns b e

i

The quality S has ''random" distribution.

The mean vélue of it will be:

R :
B = SInrf ___ E-kTam-ra
2.5 ’J n.(v - mirde L avav, (3

From (13) we observe that the mean value of the energy flux density at
the point of observation is expressed as a function of the correlation co-
efficient of Volume B (ry, r2) of the refraction index fluctuation.

We assume at first that the turbulence inside the volume V is homogen-
eous, i.e., that:

l D (7‘,. ?.) = B (7'1_ 7':)

/

(The homogeneous turbulence'is also isotropic as long as B(rj-rjy) = B(JEI-EZ])

If p = rl—r2 and using the fact that the function B(p) and the function of

the phase distribution of the atmospherlc nonhomogeneity o(u) (ug = i“)
constitute the fi:sf function B(p) the Fourier transformation of +
Q(u)(ui = %;) and the opposite*, i.e.

i

* See e.g. I. Bendat "Principles and Applications of Random Noise Theory", '
ch. II. See also the attached Appendix, % represents the "Scale of
Turbulence", of order i (see Fig. 2).



Zero crossing: T, = (0+1+2...)

Maxima: T, = XV/a

(where Xv solution of Xy = tan Xy)

Maxima values: 3
F(Tm) = -cl .__.1'._2.
T Yy il
i .
: i
i i ; «.m ¢

A 5%. 4 3/ 2% 1 L%

ARt oo e e Res ammrms eas e s

Fig. 1

Q

0

e t t t
n/cJ 2% 3% an/Q 5:%‘ 6%

: o 3
; 3(3)=.fffe—lu:°¢(u)du. : referring to the integral (13)

ORI U S

J (= kbo) OLV

{

I= fB(e)

—f}féw g, -"f

e We get:

[(k—kbo"“) al av,

Y A e



Let us examine briefly the integral:

"ZMF(r)=M-—-—.f %“"dv :

Since the volume of integration has infinite dimensions F(T) = §(T)%,
then I = gk - kd,).

If the volume V has infinite dimensions the function F ("'c)-» gives:

fffF(r) dw:fd(g) v =1 ,

R A e

Figure 1 shows abrupt maximum near the value of v = 0 and outside the zero
region oscillates decreasing rapidly**. ' 4

Further, since F(o) = -éy—g , and the fun.ct-ion F(1) is basicaily limited
T
inside the volume of order —%é we will have:
1-_fff¢<u) F(u—FtkB,) , di e fffd)(u) i
. v&n
fffmu) du
"/31:
g3
where the integration takes place inside the volume 5 which contains the
point u = k = k6_. Therefore, I = %, (k - ks ) where Qb represents the mean

value of <I>(u) (which has no relation Whatsoever to the statistical mean value),
inside the above volume.

* §(t) the delta function of Dirac. This must not be confused with the unit
vector 60.

%% Let us consider, e.g. that the volume V is a cube of side 2a. We will have:

F('}-F (f.) F(r,) F(:,) = G 'H“n ni«'n-a

EX A LR w,

where * = (savan) .
.
jax

.1
Each of the terms of the above product represents the spectrum ‘g;fc . 4%

of the plain wave ed ¥, of sinusoidal train length 2a and wave ' =& _
length A = ?r: (in Fig. 1, O is being taken in the value T,).
(continued)

10



From (13) already it follows that:

sin.- - _
o P (R=k . d5)

U S TR

= ek VST
Sy = 413

 TRANS-

 MITTER

The vector @ = k_ - kg
(fﬁolﬁ: {KS{) is directed practically ver-.

tical. Due to this, if the spectral dis-
tribution ¢(u) of the atmospheric nonhomo-~
geneities is being explored by experimental
presentation of the propagation mechanism
for each case, this is always referred to
the vertical distribution of the above
nonhomogeneities. Therefore, from the
receiver's point of view, the distinction
between statistically isotropic and non-
isotropic media is very difficult.

Fig. 2

**%Cont'd from p. 10

For tT=o, F(o)= Cﬂ)z, for x =-g s F(r) =

i)

Lo outer scale of
%, inner scale of turbulence

0 and for large values 71 the
4 = w0 “F(r)”=-6(r).-

T )
F (1) oscillates and rapidly approaches zero (Fig. 1).

turbulence

Further, for the region contained between the first two zero crossings we

have:

E @ . -

where §;(w}=
;

1= @ um s - o}

u . s . ' C : : _~ “_.a::-
flaG s @, s 0= 10 and =BT

(continued)

11



. : 3
If &(u) does not change substantially inside the volume 83 s 16

9 (k = k§;)~ ok - k8_) then:

‘ 2
_— k4. V.sin .
s‘,=---—2}--,2 PE—k. .3,,) (15) ;

Relation (15) leads already to the solution of the equivalent transversal
scattering cross section of the volume V: 1if this cross section is called o,
. the element of scattering surface in the direction 8o inside the solid angle
d@ -will be:

Sy ernd Sy .maf ;

do= c. Ay - L. - !
8 G i

20kLV. 3x. O (k—k.3)d2 (16) .
sin - e minm o e

From (16) it can be inferred that the scattering against an angle
s
Ksin ¢ = EEO;), is determined only from a very narrow region of the spectral

distribution of the total scattered radiation, near the point u = k - k'§,.
(See Fig. 2). '

This means that only a small number (inversely proportional to the dimen-
sions of the scattering volume) of monochromatic components composes the spec~
trum which results from scattering against the angle ®. These components
create diffraction fringes of constant distance determined from the relation:

:l— 2z - P L )
ISR Tasig? U 097

‘(verification of Bragg condition).

For the dimensions of the common volume ai we will have:

ii'z/";_.""").4
G ToTe s
%iné—:t: ai

: i )

**Cont'd fm pg. lO & 11

l nw
while «1,x—ffl““))a_4. {fl dzm
‘ ' . L
—3fm—dw}=£—- 5_35._-:230_;. :
gr3 _ gn3 _ .
It follows that volume 3;-§ -5 includes 99% of F(r), as asserted.

12



Experimentally so, if the geometry of coupling between transmitter and re-
ceiver is known (¢ is known) and if the phenomenon is considered to be statis=-
tical, placing two antennas in position of reception apart by

1] .
(2v +_1).§ {so that when one receives maximum the other receives minimum sig-

nal) we can determine the dimensions of the common scattering volume in the
horizontal and the vertical direction
C4n

Because: n-L%.-Zk,51ﬁ5- z 51n-§-f we have finally: (given that

X=a £ ¢) »
2 A

T o e
do = 2x (-:-> . V-:31rg9;q»-<4n/z SihT) faa )

Given that, as a rule, the angle ¢ is very small: cos2 ¢ 2 1 therefore:

‘! da-.2r:.(2n>m ~—~’Slﬁz—>—_’ i, 018

represents the equivalent scattering surface for a unit of solid angle, unit
volume and unit density of the oncoming power on the volume of diffusion.

We remind you that

and that k = Eo - Rl where Eo is the direction of the oncoming radiation S

on the volume of scattering and k the direction of the scattered beam

, r
f;‘against an angle ¢ relative to the penetrating direction.

, ' i T
Meaning: P R 4z

_ g ”«s(u,,—‘/;,);@.p (__ sin g ) =

i

i J (ko"ka) L !
(2“ fB (r) e dr

Substituting into (18) we get:

i

?dv= Ifﬂu.e“‘“““"'cfr (1) °

Let us consider now the relation (12)'. This is written:

13



c.hY, J (R—kBg) £ - (E--k&—) 3
S :=-~S n,(a). € ° ‘fn'r).c‘ o e
2 () z l( t) d s P A . dl‘. =

v

o O K glﬁv f I (g~ Jr. g
32 %y n(ﬁ;c . dr

} and . .
‘wdao _ Sy d Abln\ daQ Jf a (7). e‘ (.O—Lx), )

s

and because sinzx s 1 the per unit of solid angle equivalent scattering cross
section will be: '

" da, _——-. Un(r) ““““’““ d? (20 ,

~

Relation (20) constitutes equivalent expression of (19).

It remains now to examine the nature of the potential, which the distri-
bution n(r) is due to. We will then examine the reason and the mechanism by
which, inside atmospheric volume V, turbulence is created and developed, a
result of which is the distribution n(r)*.

Let us comnsider originally that inside the above volume the wviscous
fluid (atmospheric air) has laminar flow. This flow is characterized by the
value of the parameters . (where u is the viscosity of the fluid and p its
density), which gives th8 measure of the retarding forces under which the
molecules of the fluid are, given: its viscosity, the flow velocity V and
the length L, characterizing the dimensions between the limiting surfaces
0of the volume V, inside which the flow is laminar (e.g. if the flow takes
place inside a pipe, L, represents the diameter of the pipe).

The laminar flow of the fluid is "stable" only in the case whexe Reynolds

number i v. L
QR= i

({}) does not exceed some critical value R.. 17

While R increases (due to an increase in the flow velocity, or an in-
crease in the diameter of the pipe of flow, or a decrease in the viscous

.forces of the fluid) the laminar. flow becomes unstable due to the feollowing
reasons:

'Let us consider that for some reason a "clot" is created inside the fluid
which is characterized by velocity variation v' inside the region of diameter

Lo. The '"period" 1 = % characterizes the time required for the above change

v' .
to occur. - + The per unit of mass energy of fluctuatlon will be v'2, It

*See Appendix.

14



follows that the per unit of time energy, which is transferred by the laminar
form of flow in the turbulent movement will be equal to v'2 . y'3 . On the

T %
other hand, the per unit of mass of fluid and the per unit of time dissipated

in heat energy (due to friction inside the turbulent clot) will be equal to:

P

aN g b N v
.<"§‘> (gradv’ ).} But grady = T |

As a result of the above, the condition for the resulting velocity change to
remain stable is: .

©

The above relation indicates that large scale disturbances occur
easily. Ry represents now 'the inner Reynolds number" which is referred to
more in the flow which is characterized by velocity v' and dimension g.

. . . v.La— > R

While 32 remains smaller than the value R for which (,;\ ~ T

A 3
the resulting fluctuations v' of scale g change, of course, the nature of
the original flow, but themselves remain "stable". Since now we increase

i N SN
()T e »

the number Y:Lo  the fluctuations v' increase and the inmer Reynolds
(u/p ,
number R, can exceed the critical value. This means that the "first order™

fluctuations v' become unstable and transfer energy in other "second order"
fluctuations v' of scale L1 As long as the number v.Lo increases

U7 P
further, the fluctuations now v'' "second class' become unstable transferrin
g

energy in third class fluctuations v'' of scale 2,5, etc.

Let &, be the range of the smaller (of higher order) fluctuations which
can occur in the system under consideration and v, their velocity.

Since for all lower order fluctuations the transfer energy from one
range to the next was given partly as dissipated heat and partly as power
v3 : |
zt— for the "initiation" of the next order fluctuation, in the case CN Vo) s
the corresponding energy is being transformed purely into heat. In this case
the per unit time energy which is transformed into heat will be

()%
3; — c—z;—-.r
B .e 10 .

Given though that for all order disturbances of range ¢ > 2, the inner
Reynolds number R, is large (for the troposphere"5106),the percentage of
energy, which is used each time from order to order, was minimal compared

15



to the energy attributed to the "initiations" of the next class fluctuations.
We can approximately say that the quantity v'3 was transferred up to the

2
last order almost untouched, and, therefore,

.
vt (m\ % or :
: IET Y v\ el !

meaning that for all order fluctuationsthe velocities v' are proportional to
the 1/3 power of the corresponding "scales of turbulence". From the relations

- -

. L and ) I
e ()

&

S

©w© ! ccw

it follows also: ) e

and | e ..~\/<.§.>x (3) -

i

zogz\/.‘_!iéﬁ. @)

The relations now between the maximum (Lo) and the minimum (20) scale
of turbulence as well as between the corresponding velocities of fluctuation
v-and v, will be: [see (1), (2), (3)]

L,

— L nd Iv
= (RYle & ’

L
Tyl

This means that as long as the Reynolds number .of the flow as a whole
inside the volume V increases (as long as, e.g. the wind velocity v increases),
the minimum scale of turbulence becomes smaller. Given now that the electro-
magnetic radiation scattering is possible to happen for minimum wave length
A = 205 it 1s obvious that tropospheric coupling of known wave length XAy can-
not physically be accomplished, even if high power transmission is used,
beyond a distance for which the altitude of the common volume of scattering
V, formed by the solid angles of transmission ~ reception, is situated in a
region where };->> £+

On the other hand it is obvious that the velocity v; (¥) determines the
distribution nj(¥): if the coefficient of auto-correlation of the distri-
bution n; is on length ‘;xe(ﬁ)==”09'"(”ﬁfﬁ?‘ and the corresponding mean scale
of turbulence o :

PR w B N ; » z o . 3 l .
] . y A s s by £ EY
. li =f 4] (r‘) d"‘ o0 LS ¥ ‘D} : \/. fi . ‘;.

o ) 5 RN

Lo

where v, is the fluctuation wvelocity of the fluid that pertains to an atmos-
pheric clot of diameter £ .

16.



PART B.

DETERMINATION OF AMPLITUDE AND PHASE FLUCTUATIONS OF A
PLANE MONOCHROMATIC WAVE THROUGH TURBULENT ATMOSPHERE

Introduction

The influence of turbulence in the lower atmospheric layers (tropo-~ /8
sphere) on microwave propagation causes scattering and fluctuations of the
amplitude, phase, frequency and polarization of the microwaves. These phe-
nomena are of great importance since on one hand they allow the prediction,
through a statistical study of the quality of a radioelectric coupling through
the troposhere, and on the other hand, they allow, by their proper interpre~-
tation, the introduction of essential conclusions regarding the.nature of the
propagation medium, the establishment of relationsships between radiocelectric
and meteorologic parameters, the knowledge of the degree of error of radio-
electric directional aiming in the cases of satellite communications or in
spacecraft gemeral electronic guidance, the knowledge of the degree of error
of telescopes or radiotelescopes, etc.

The problem is expressed as follows:

The radioelectric radius, from the transmitter to the receiver, follows
a trajectory determined from the distribution n (X,y,z,t) (more accurately:
from the first two factors of n relative to each variable) of the refraction
index. .

The transmitter ‘and receiver may both be situated within the turbulence
region or one within and the other without. In the first case we can sub-
stitute for the transmitter, an equivalent source located at the boundary
surface of the turbulence volume (e.g. in the case of a satellite or a star
being long distances from the Earth, it is possible to substitute for the
transmitter, a plane wave on the separating surface marking the end of the
troposphere). In the second case, we can generally disregard the portion of
the turbulence volume behind the source since the influence of the scattered
wave towards the rear of the transmitter (backscattering) is negligible. 1In
our study we will consider the turbulence field to be "locally isotropic'*.
Our problem is the determination of the statistical properties of the wave
at”a distance L from the source (transmitter). We will begin with a rela-
tively simple example based on the geometric optics approximation.

I. EXAMPLE USING THE EQUATION
OF GEOMETRIC OPTICS

1. As was developed in Part A, the electromagnetic wave scattering in
a nonhomogenous atmosphere is described by Equation (4)

V2 E + k2.02.E + 2 grad (E grad . logn) =0

*See Appendix.”
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We assume that the geometric dimensions of the nonhomogeneities in the
volume distribution of the refraction coefficient are much larger than the
wave length A(i.e. A << 2, where £, is the "internal" scale of turbulence).

In this example, substituting in Eq. (4) n =1+ n; and

E=EAE, (B << Bl n]<<Y)
‘we have V'E+KkE,=0 and '
Q1 B, - k2 B b 282 ny o By 2grad (E gradn) =0 -

The last term of the above equation is approximately of the order of mag-

o n
nitude kE E;- and the next to last term:
o

i

.-Zk' n,l Eo: T for +&< L .
.,on
or kla>>1 is: 2k ny | Lo D> k|| - —
: — k| E{n,/l,

In addition, the term 2 grad [E grad log n] in Eq. (4) describes the var-
iation of the plane of polarization, during the wave propagation, which for
A << &, is negligible. Under these conditions Eq. (4) becomes:

VE+k2.02.(5) .E=0 4.1)

For each component of E in the direction x,y,z, we have the relation:

i v’u+k’.7z’(;).u‘;.-0 (4.2)
or 9 ufu 4 k3. nt (7) 'j:_——-'v’ log u - (v log u) -+~

= o (4.3)

We apply u = A . ei¢ where: A is the amplitude and ¢, the phase of the com-
ponent under consideration.

-

Substituting in Eq. (4.3) and equating to zero the real and imaginary
parts we have:

v? log A (v log A)— (qu_)"—%-k’ n(r)=0 Chob)
and = P e+2vilgd.ye=0 (4.5)

First we observe that since ¢ = k r and |Vé|= k, the last two terms

18



4w2

of Eq. (4.4) aré of the order of k? = . Further, we consider that the
amplitude A varies substantially in instdnces of the order 20 Hence the
expression:

2 ,
v2 log A + (v log M2 = Ezé is approximately of the order of —lf , since

X
2 o)
A << 2o 4; >> —k and, therefore, the first two terms of Eq. (4.4) can-be
Y 2

disregarded in comparison with the last two terms. Eq. (4.4) then becomes:
(v)2 =k2 . 0?2 () =0 (4.6)

To determine now logA and ¢ we will use the system of Equ.{(4.5) and (4.6),
i.e. the system of geometric optics equations (ch. 2).

We assume that the distribution (¥r) is random in space
n(r) = 1+ 10y (¥) and [ (@) ] << 1

(see Part A.)

We put ¢ ¢, + ¢ and logh = 1ogA.O + x

where x = log -i_- /9

o .
represents the amplitude fluctuations on a logarithmic scale.

The Eqs. (4.5) and (4.6), therefore, take the form:

(v¢a)‘+2 Q%0 » YPs - (Y2 = K 2K () +

o _ + kol (7) (4.7)
9 ot 9P 2. vloJAo LY@ +29log 4, Ve, +
429z gg, 2y ve =0 (4.8)
but; (Vgo)* — & vand‘theyexpressionf

Pet2v094.99 is of “zero™ order
As a result of Eqs. (4.7) and (4. 8)

! become:

% Ve, (2070 9 = 26 (P (1) (4.9)

s and V¢.+2v log 4o . P 29% . Vo T

. +2yeve =0 (4.10)
Now, in the case where [vé1]| << |v,] = &k, L.e. A |Vg1] << 2r we can

onmit the term (V¢1)2 in Eq. (4.9). TFurthermore, the term K2 n% (r) ,

(Jn; (®)| << 1). can be omitted from the right-hand side of Eq. (4.9).
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Then Eq. (4.9) becomes:

Voo - Vo = k? n3 (T) (4.11)

valid for ]v¢l1 << 27 , i.e. under the condition that the phase varies neg-
ligibly in length equal to A. .

As result, we can also omit the last term of Eq. (4.10), and then:
V24 + 2V logh, Vo + 27k . Vg, = O (4.12)

Let us consider now a plane wave in the direction of axis x. We have
$o = K.x and A = const. Eqs. (4.11) and (4.12) take the form

9¢ - .
and oy + 2k-%§ =0 (4.14)

Let us consider that with the transmitter at the point 0, y, z and the re-
ceiver at the point L, y, a, we have, by integration of Eqs. (4.13) and (4.14),

" L . N (4.15)
P lLy.a)= k[ (60, 0 ax

° )
. N 1g_>_<?_‘£_)+
and (L U"’)“"’z—k' X [ (Tay) \ 9% /{07,
aa‘f‘x "g‘px>dJ
+—f( ) 4
But the quantity '_ ' hf

a1 awO ;(am) '}m. Ag
. d/; ( .x4 {(foyiz) . {0,:2) " ) S ’

.

H

10 ' 1
=—2—’{?1 (Lp W 2)—71‘ (0, W z)J

is smaller than the integral

2k f(o,%'*' 02‘)
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Therefore, we can approximately apply:

Lo #n, (5.7 , n, v ] .
x(L.y.z);;-fdfo ‘ay,’ T ]d«:

a o

and, in the case of isotropic turbulence, -

x L .
ac(Lyy, s)=~ fdx f—gz%—(‘;’-:—'—:ldf (4,16)
o o

From relations (4.15) and (4.16), and knowing the function nl(x,y,z) or in

the case of isotropic atmosphere nj(x), the functions $ (L) and x(L) are cal-
culated.

Before proceeding with the general solution of the wave equation, we
should refer briefly to the criteria which determine the distance L, so the
approximation of the geometric optics by which the solutions (4.15) and (4.16)
were accomplished can be taken into account without appreciable error.

2. Determination of the limit of application of the geometric optics
equations as applied to the electromagnetic radiation propagation through tur-
bulent atmosphere. :

2.1 The theory of the amplitude and phase variation of electromagnetic
waves traveling through turbulent atmosphere developed in Chapter 1 was based
on the equations of optical geometry which, as we proved, resulted from the
wave equation for: )\ << g&,.

The above condition is not sufficient since we consider that each atmos~
pheric "clot" of the nonhomogeneous troposphere produces significant diffrac-
tion of the incident wave.

Let us examine the principal factors of the subject:

From the definition of a monochromatic plane wave, this type of wave has
constant amplitude universally in space and time.

Any wave, therefore, the amplitude of which does not precisely fulfill
the above conditions, is more or less nommonochromatic.

Let us then examine the problem of the "degree of monochromatic character"
of a wave, i.e. the determination of the limit of application of the geometric
optics equations.

a) Let us consider an electromagnetic wave, the amplitude of which is a
function of time universally in space.

Let w, be the angular "mean" frequency of the wave.
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Suppose the component of the electric field of the wave has the form of

i t
E (t).eJub . This field (nommonochromatic) can be analyzed in monochromatic
components using its Fourier integral.

The .amplitude of a freqﬁency component ® will accordingly be equal to
L . ‘
. ) . —wgit .
i o). T (1) /10
- b

j(w-w it . .

The factor eJ( o) t is a . periodic function of average value equal to
zero. If the E, is constant, the above integral will be zero for all values
of w# wy. If now Eo(t) is variable but varies "little" in a time interval of

the order of 1

» the integral differs from zero significantly 1es% as the
(o} ' ‘

variation of E; in the above time interval is smaller.

In order for the value (I) to be distinctly different from zero, it is

necessary that E, vary substantially in the time interval _1 .
: W
e}

Let At be the above time interval.

If we designate Aw the frequency interval'(about the value w,) which
enters into the spectral determination of the wave, we have:

Aw At =1 (1D

We observe, i.e. that a wave is significantly more monochromatic (Aw) as
the time interval At in which the amplitude Eq(Xgs Yo»r 20) registers a given
change is longer. :

b) Let Ax, Ay, Az be the distances in the direction of the axes x,y,z
where the amplitude Eo(to) changes (substantially). In a given time t, the
field as a function of x (for x,y ; const.) has the form

3 Eo(x) . ejk(x).x where kx) = ;%57 .

By exactly similar deduction as in 2.1 a, we develop the relations:

oL dK(x) . dx =1, dR(y)cdy =1
© and- 8k (z). dz =— 1
jand R (I11)

From the above relations, it is obvious that if we consider an electro-

magnetic nonmonochromatic beam to be of finite cross section, its direction
of propagation cannot be constant,
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Considering the axis x as (mean) axis of direction of the beam, we define

the angle Oy of the divergence of the beam by the relation:

1. ' .1
Tdy (v

Therefore, a nonmonochromatic convergent beam does not produce one bright
point on a screen, as in geometric optics, but a spot of diameter

1 A .
A *%. o ~ o - This signifies that for the observer, it is not possible to

distinguish an obstacle between the source and the screen of diameter
o < bR

0
Inversely:

- For a monochromatic radiation propagating through obstacles of minimum
diameter, %, (in this case 2, is the minimum or "internal' scale of turbulence)
at the distance L. from one of the above obstacles (atmospheric clots), the
diameter of the scattered beam will .be equal to 45 1 AL, In order for

the geometric shadow of the obstacle ¢, to remain relatively uniform (condi-
tion of geometric opties), the following relation must be fulfilled:

XL/!Z,o << % or for given A, % the distance L between transmitter and re-

ceiver for which, in a turbulent atmosphere, the propagation occurs, is, ac-
ccrding to.the laws of geometric optics, limited by the relation:

2
L << Lcr =..89. W)
A
e.g. for & =5 m and A= 10 cm

we have L =250 m

cr

II. 1, SOLUTION OF THE WAVE EQUATION BY THE
METHOD OF "SMALL DISTURBANCES'".#*

At long distances, | L >-y=), from the transmitter, we cannot disregard
the diffraction of the waye by the atmospheric nonhomogeneities 4&,.

For a general solution, therefore, of the problem we must start with the
general equation: o )

Pu+k? .02 () u=0 (5)
We apply as in Ch, I

*Born's approximation. See reference and Mandl, "Quantum Mechanics".
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n (r) = 1+ ny(%) (5.1)
where Inl (£) | << 1.
The principle of the method of "small disturbances" consists in consider-
ing the component u of the electric field to be calculated, as a sum of one.

term u, representing the field in the absence of turbulence and of another
term uj rYepresenting the influence of turbulence on the term u.

u = .uo + ul (5.2)
Substituting Eqs. (5.1) and (5.2) in Eq. (5) and considering that:
2 2 - ‘
Veu, + k u, = 0 (5.3)

2 T2 2 2 .2 - ©
we have v ul_+ k Uy + ank (uo+ul) + kl ng (uo+ul) 0 (5.4)

The last term of Eq. (5.4), of order n%, can be omitted.

If we now suépose that |uy| << |u,|* or more exact }%ll ~ nj, we can
o

omit the term nj(¥) . uj in Eq. (5.4).

‘Therefore, we have:

V2 up + k2 uy = -2k2 ny (%) . ug (5.5)
Let now: uy = A, ej¢° and u = A.%¢
is: thgu =t10gA + j¢ = log (u0 + ul) = 11
L uy
. = log u, + log (1 +-a;)

But according to the assumptions made of "weak" influence of turbulence,

S R SRS » L feaesestns

N K . . o - ’ 1‘
log (1-}-—3:—) — 7.% and

. - . u ,A
- logA + jo = log 4, “+Je -;;i‘ ‘

whence:
A 3 . Uy
—z i Re | —
..log‘Ao . l_uﬂ] v
| C "y (5-6)
. and ’ ‘P""Vn:?’l:‘lm{';‘i']
)

b

*This is especially valid for couplings of line of sight contact.
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2. Solution of the wave equation by the method of "smooth disturbances".

The equation (5.5) and formulas (5.6) are valid for
x| << 1 and 1] << 1
However, the above conditions~are more disciplined under the condition

A Iv¢lj << 2m, which we considered in the solution by the geometric optics
approximation.

In order to avoid the distinction between boundary conditions of cases
I and II, it is preferable to express the wave equation in the form:

2
Y;—‘l,+ k2 n? (F) = v2 logu + (V logw)2 + k2 0 (F) = 0 (5.7)

and to apply to it the method of '"small disturbances".

Applying:

?.. la.gu':..; 4 -H‘qo-_—@ { Ré[\pl'= log A{ im{w] = ¢ }
which is 9w (@¥)+ 8 [T | =0 ‘ (5,8)

Substituting:” Y=Vt ¥ where y, satisfies
the condition:

e I e g 5

Vet (Wr R =0 (5.9)

Substituting in Eq. (5.9) we get:

1 Ot v Cuvet v 2k, () i ()= (5.10)

omitting the tel;m_k2 . n% (r) and, under the condition [le[ <% ]Vmol, the
_term (Vlbl)2 we get

vt 20w, TRt 2k m{) =0 C(5.11)

Equation (5.11) is valid under the conditions

1 n, ()] << and v | << 1wl because

[op k=T 4 foml K<

a condition which expresses the stability of Y1 on a distance of the order M.
Applying y; = e”. w (5.12)
we transform Eq. (5.11) into the form

v + k% + 2k Ly (0.8 =0 (5.13)
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. Yo 4
Since e = u, we see that Eq. (5.13) coincides with Eq. (5.5) which
results from the method of "small disturbances'.
Because w= logd 4 jo & e =1lo 40 +i%s
are - Y EY -y, = 109—/‘;—1-‘-{-/(?’—%): z -fjo
. . ]
anci g A]d, =z = Ie [w;] = Re [—-:—:—‘-]
. . . o

. o (5.14)
9"‘"?’o=?’1'_‘= Im|y,] = Im [’Zf] .

Equation (5.5) and relations (5.6) agree with Eqs. (5.13) and (5.14) re-
spectively.

The conditions for this are:  \|v¢y| << 27 and A|vx| << 1 and not
directly |¢7]| << [¢,] and |x| << 1.
After deriving the identity of the boundary conditions for the solution

of the wave equation by approximation I and the general case II, we arrive at

the solution of Eq. (5.13). It is known* that this solution will be given by
the relationship:

ler-—r 1

| w(r)———-fm(r)ua(f) gl (5.15)

wherg r' is a variable vector extended to each of the points of the volume V,
and T, a vector extended to the point of observation (receiver).

The integration is extended on the ehtire volume, inside which:

n1(¥) # 0. The quantity g =-ﬂ—§§% will be given by the relationship:
» u_ (¢
. - Yo

_ K=" ;
YU (o -—-———-—-—. dV ¥
J‘"‘.f' S (5.16)

¢,

T =
‘ ‘() 2sin 0) -

This function constitutes the general solution of (5.11) for all values of
Yo which satisfy the equation:

'V,.:I‘q :{‘"(V‘l’o)"*‘ =0 |

*For a very detailed analysis see Mandl, "Quantum Mechanics".
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Let us consider now a plane monochromatic wave traveling along one of the
axes, say X. '

jkx
This will be u,(x) = A, e3 and then (5.16) gives:

n_._' —jkjx—x'] ¢ d‘V' L (5.17)

The above solution can be considerably simplified in the case for which
A << L8
(o}

Surely, in the above case the angles of scattering of the incident wave

by the nonhomogeneities of the refraction index are of the order /12
0 = 7% (very small). Therefore, the value ¥ (¥) will score substantial
; .
variations from point to point, only inside a cone of angle . @, = A << 1 and
0

axes coinciding with the axis X and which has its base facing the point of
transmission and its vertex at the point of reception.

Inside this volume:

lx—x| >> Vu—.z) F G-y

but: lr-r[-—V(.z:-x)+ J...J)..}‘(._”)-.._

— Pt
*%A—x)b/l =yt ama

(x=x")"

4 (z2—2')® o
w(x--x)[w- 10 ZJ(l x"), }—(.x-x )

. (y=—y V't (=2
+ 2 (x—x")

reolacing this.value in the expression
exp [jklr-'-r'u

and considering in the denominator [f - ' | only the first term of the above
expansion, we have

i

e-rp[.?k 2(x—x")

=y V(e 1
av’

AL (n= —-—fﬂn‘«" (x—x") (5.18)
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It can be proven easily that relationship (5.18) is the exact solution
of the equation:

0"/; L0y . ayr, . —_ .
o a-.‘ -:-216-;,’; +2 I»'n-’r>-—-° (5.19)
2 l
which results from Eq. (5.11) by omitting the term o u .
ax

Referring to the error which is being introduced in the phase of Eq.
(5.16) by omitting the first two terms of the expansion:

-, . bt vkt kute
kjr—7i=k(x~— x)+2(x—xf +8(x-—x';‘ deaes
, g J PN ey
where u~ 6.L — ‘L and (=x") = L

¢ o N - e e e

4 _
we see that the difference is of the order of ._LL_.Z.k . The error is, there-
' (x-x") ’

fore, negligible while:

0 but o -',z‘ ' z”
L << — + because A<< b v >> "‘

. i .
"-.-a'nd sincer L >> T it must iensiue that:

i SR TR,
7+ <L o

For the case, e.g. where 2o = 3 mand } = 0.1 m we must have L << 625 km
which is practically the case for all terrestial radioelectric couplings
through troposphere.

‘3. Solution of Equation (5.19)

We begin by expressing the distribution n;(r) = nj(x,y,z) with the ex-
pansion on the plane x = const.

: RS R
i‘n,(x. ¥ 2) = B, (%,0,0) +ff [1-— exp {j(u,y-i—
i ’ —C

+'“-_z> } ]“"“*' ey %) (%) (5.20)

-

*v(uy, uy, x) is the function of spectral distribution of ny (x,y,z) on the
plane x = const. For further analysis see below and Appendix.
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We will search for a solution of Eq. (5.19) of the form:

. .+ o
~.V'§(’:.)=.‘l’l("-°-°) +’ff [1"’ exP{]'(“ﬂ/'{" .

fua | Jaet w0 (5.21)

Substituting expansions (5.20) and (5.21) in Eq. (5.19), expressing

u% + u§ - and.applying y = z = 0, we obtain:

(x, o.o)

ffu’ do (4, uy x) 4 de‘ Fr
2K, (%,0,0) = 0 LT (5.22)

Substituting the above -expression in
expansion (5.19

;ﬂm. #Onz¢°' we have:

S + o

. :'ff“‘“' [il._cl(us}"-i-u.z)-}d (ttg.44.) + ‘
ot : i

, T Kay4+uen)] O - e
+2]kff i—e S;dw(u.-uux)-i-

P +21.-ff[ “"’y+“'z)J dv (Uy g, X) =0 (5.23)

From Eq, (5 23) it is concluded that the amplltude dv (uz,uB,x) and
d¢(u2,u3,x) are related by the relationship:

o A e

2]k —- d¢(u,.u..x)-—u' d¢(u,.u..x)-f
' f . ‘ +2k‘ dV up“ux) =0 (5‘24)

The solution'of the above equation which approaches zero for x = 0 (which,
of course, means that the fluctuations of the field disappear on the boundary

surface of the volume inside which the distribution nj(x,y,z) exists, has /13
the form: ‘

* (u3, ug x) is the spectral distribution function of (x,v,2) on the plane~
X = const. The spectral component u must not be confuseéd with the expression
of the electric field noted in paragraphs II 1 and II 2.
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do (4, Uy, X) ==

. ‘
Y teeErr g {x—x’) .
= =k | dx CJ;PH "'—"""'57;_‘""' di’(uu U X )‘;
o

Froﬁ.relation'KS‘Zl)'we have: =~

a:(?fé‘ﬂle{[v;.(x.o.q) 1 &4
¢ oy
+I‘e [f&[ [ Y J de (u,.u.,x) ==

. =
Ugz

f =Re[y.(x,o,o)J+~—;~ f f {1—gtu,v ug )] S

Ve W

'+j-%~ f 7 [1-—[“"’”““’} de*(uy, 4y, %)

or ‘ 2.:(-;')‘=Rc [w, '(x,o,o)] -+ |

+ f f[ (uny+un)J d¢(a:,z¢.x)+fi";p*(~u,—u. X}

Slmllarly we find:. ¢, = Im [vi] & theres~ .«

; ) i fore*
“eu(r)=Im [%(x.o.O)} +

‘®
Jugy+uaz) d(p(u,,u,.ﬂ()‘-dm*(—"u,-'u,,x)
+ f f [‘ ] Y .

We designate: .
do (K%, x)—}—dtp*(—u, =, X)

. da (u..u,.x) = 5

}

.‘A‘ S A (Uy. Uy X) =~ d@¥(—hy, =14 .x)
and do (U up.X) = {ty: g 27 ot

w3 x—x")

da (g g X) =k . f dgjgés[u’%‘ﬁj dv(u,.u..x)

~Substituting in Eq.. (5.25) we obtain: !

. X ‘ :
da (ulou.ux) f=—~4 k.fdx‘sil{-———é—l;—-—‘} dv(unu"x') L ‘«. ‘
N o .

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

*The expression of the phaae ¢1 should not be confused with the differential

d¢s
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Let us make a physics analysis of relations (5.28) and (5.29):

The expressions da and do (see Eqs. 5.26 and 5.27) represent the respec-
tive spectral width components of the fluctuations of the logarithm of the
amplitude x(r) and phase ¢l(f) of the scattered electromagnetic wave. :

We observe that nonhomogeneities of the refraction index of dimension
= 27 '
L= T which are at a distance x-x' from the point of observation (receiver),

appear in the determination of the amplitude da and do with weighted quan~

2 22
tities 51n-EA§ and ' cos jm? respectively where 22 = A|x-x'| is the square of
A &

the radius corresponding to the first Fresnel belt.

The degree of influence of a nonhomogeneity of the refraction coefficient
on the fluctuations x(T¥) and ¢1(r) depends on the relationship between the
dimensions of the discontinuity & under consideration and the radius of the
_first Fresnel belt in the region of the nonhomogeneity %£. This degree of in-
fluence, as long as the frequency of the propagated electromagnetic oscilla-
tion increases, decreases for the amplitude fluctuations and increases for the
phase fluctuationms.

Multiplying the expression (5.28) with its conjugate:

.Ada; (uz’. “‘u'» x) =
= k fdx“s [‘u (X"-x ):l dv*(u, 'u. X )

and taking the average .value of the pro- ;
‘duct, we have: . .

- da (u,, u.. x) . da* (u, . u, x) =

= fdx fdx"s u’(\—x )}s n[ "(x-—x")]

dV(H,, u.. X ) d’ (ug ' ug » x" . . N N

It is easy to prove that a locally nonhomogeneous field £(T) developing
at the origin can be wrltten

N
e i A PR, .

7 = (o>+ f f [ (1-e | )dv(u) P A)

B o T
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The spectral width dv(u) of the above field satisfies the relationship:

dv(@p) . avx(dy) = 6(d1-G,) . ¢(§;) . di; di, (B)

where ¢(u) > 0 is the spectral density of the function f(r) and § the Delta
function of Dirac.

Accordingly we have:

dv (g, gy X) d¥* (g, Uy X'7) = 8 (uy— ug ) 8 {uy— :

: - u;,) F, (ua, ugy i'—x")_du,, du,. du; . du; . and ™ (5,.31)
91m11ar1y '
da (1, 4y, X) da™ (u, . “s X) = '
= O(uamity) 8 {ity —1dl ) Folttss ttys 0) dutydnsy dusy ducy (5.32)

where: ‘Fv(uz, ug, x'-x'") is the two-dimensional) function of the refraction
index spectral distribution and Fa(uz, ug, 0) the (two-dimensional) function of

the spectral distribution of the structure function on the variations x on the
plane x = const.

Let us prove this by more ‘detailed amalysis of the meaning of the /14
above function:

The "structure"* function of the "random" and "stationary" function f(¥)
represents the strength of the fluctuations of it for distances r <'rj and is
given as

DE) = £+ - £ED1 | ©

and D(r) = 2 [B(O) - B(r)] where B(r) = £f(r) £(r+r) the correlation func-
tion of £(¥). '

+, Considering the relations (A), (B), and (C) we have:

D(.’-')::sz?(x—gns".?).q@ e f )
—0 <

If the field is also locally isotropic, i.e. that inside the volume AV
of its isotropic character depends only on the measure of ]f] = rp then:

.

D(r) =8= f(x-Sifjf;") - 90 -.éu. } (E)

*Relative to the meaning of the structure function see attached Appendix.

i
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Let us now examine the case of a locally isotropic "random'" field develop~
ing on two dimensions on the plane x = const. (for example).

Is:

| £ (x g 2) = f(xi 00 0) '. i

+ Ii?{l—cxp»[‘j(u,y -+ u,z)J } dl}! (u..u;o x) 2

where the function Yy gives the spectral width of f(x,y,z) and satisfies the
condition:

dy (wps uee X) 4 AW %y X)=
= "(ua“u;) <0 (u— uls) < F (uy up | x=— X[ )
duy du, dug dug o (F)

where F(uy, Uy, X - x' ) is the two-dimensional function of the spectral dis-

tribution of the field f(x,y,z) between two points on the plane x = const, we
have: ‘

et s 1 i R e e

)(x. v —f (x; ¥, = f,f {cxp [/'(unu'+ “oz'} -
. * - |

!' ‘-'&‘01’ [ Husy -+ %,2) ]} o Ay (g Ups X) o

[ e

3

EN

_ If we now calculate the correlation function of two such differences
taken on the planes x and x',we have:

Vw0 [0 = F (X0 )] =
R | et ‘ !
%» ’=f°_.[ff {“3’ {j(uay'+ “-2')] -~ exp [J'gutu“i' un‘)}} L
(. T e . '

. {cxp [--j ('u', 1/_-'”;‘“; z’)] ...cxp’[-—i(u; +u'32) ] } .

0 dip [y, U X) dy* (“’lz.' u;" x) (2)

Using Eq. (F), the right-hand side of Eq. (G) becomes:

e - i K o
-ov s (y=y° $ (z=z (Uge Uge] K=
\2[!{1}»’{:4 (y=~y") +us(z z)}}l‘u u,] x

(H)



Essentially, a correlation between the differences

{£(x,y,2) - f(#,y',Z')} and {f(x',y,z) - £(x'y'z")}

is created only by nonhomogeneities, the dimensions of which are greater than
the distance lx—x' of the two planes x and x', i.e. for distances & 2 |x-x'|
or for u |x-x'| < = 2n/%).

As a result, the function F(uz, ug ]x—x']) which is the spectral distri-
bution function of the expression

[£(x,y,2) = £(x,y',2")] * [£(x',y,2) - £(x'y'2")]
decreases quickly for
u | xx'| > 1

Using the identity.

(omf) (1=0) = | (@m0t (=1 Camry— (507 |
we can express Eﬁj'(ﬁ)m£H férmé-6fmthE'sfrﬁgfﬁ}é_fﬁﬁéfion of the field £:

D(x=x'y y=y's 2= 3') — D (x—x ' 0 o) =

=2 j f {1-- G ly=y) Iz-zD} F (e [ (1)
’ e GO

3

' —xl) du,du. v
~ Applying © a=a’, y=y'=7y and oy F=§ we
' obtain: .

D(o.y.e)—Zfo[ - Gy us). | &)

IV L F (the e 0) duiy o duty

i.e. as was stated and for F,(uy, ug, o) aBove, the F(ujy, ug, o) is the two-.
dimensional spectral distribution function of the structure fungtion Din, &)
of the field £(¥), as we were to prove.

In the case of local 1sotroglc conditions on 5?ezplan§_x = const.,
F(uy, u 3 |x|) depends only on the parameter u = /uj, + u3 and, therefore,’

considering the relation
I .
f " {xovry) ds=2al, (x) °

0.

where Jo(x) is the Bessel_function of zero order we have: [15
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t

D{p) == 4= f [?—-—Jo (u e)] F(u, 0) udu

i

; ) 2, -
where e=rE g Tl =1 idtd o)

(K)

In the case where f(¥) is homogeneous and isotropic on the plame x = const.:

-

o o
Bey=2n [Jo(u, o) B o) u.du |

(L

It remains now only to express the relation between the two-dimensional

function of the spectral distribution of D(p), F(uy,
dimemsional function of the spectral distribution of D%r), ¢(u1,

x) and the three—

uy, u3)

[see Eq. (D)]. Substituting from Eq. (D) into the left member of Eq. (I}, and

considering that ¢(uj, u,, u3) is an even function, we obtain:

o .
F (13, %) = [ codin, X). @ (it s ta) G |
: -~ . !

. © ;
1 - ' f

or ¢ (U Usvety) = e f T (s th x) rcostix) . dx i
® !

and for the plane w=¢031

. : ) . . ’
D (0) Uss thy) = "'1;" f Fuy, tg, §) & C
° .

Let us return now, after the above explanations [Eq. (A) up
Eqs. (5 31) and (5.32):

Substltutlng the above in Eq. (5.30) we obtain:

': in(l‘:_gf—_]:’i—)) F, (up0 e lalz;-'-x"l))dx'dx" . "

" Similarly from Eq. (5. 29) we achieve'*“”

2 o (1t g 0) = B9 f fco<“’(x-x")) o

cos(“m"’;;" ) 7, G | =) x|

6

 to (W], to

(5.33)

(5.34)

35



The expressions (5.33) and (5.34) can be substantidlly simplified:

Primarily', F, (uy, ug, x'-x'") = F, (uz, ug, x''-x'") allows the introduc—
tion into Eqs. (5.33) and (5.34) of the variables of integration:

8

£ = x"-x"" and )\=x' + x'!

The integration with respect to y can easily be achieved because F, is

independent of Y. Designating the abscissa of the point of observation (re-
ceiver) x = L, we obtain

7{/»’ (L—=&). cos( 2k )-{———-sir'l( ;’f)—

o .su(,-fi‘—z—’—‘:-f—’)} Fy(uy v )0E x (5.35)

‘and F (ua, e, 0) =

__f {h' (L=§)cos——~ 2k -ﬁ-:51 we +
+__.. n_(?_zf%'..ﬂ} F,(upupn ) (5.36)

As it was referred to above, the function Fy, decreases rapidly towards
zero for u . £ > 1. Therefore, the substantial contribution of Fy, to the
above two integrals occurs for E < 1l/u.

-

In this region the contribution is ng On the other hand, we have

< 2.
Sk

assumed that A << £ 3 however, % , -1 where u, is the maximum value of the

parameter u, for which F, (u,E) # 0. Therefore; we have % <«<_ 1 44

% < B-mE << 1. Therefore, the relation gz_é << 1 dis fulfilled inside the

esgential area of integration and.we can state:

i e

6w s:Ln(u’(ZL—E)l :
cos G- Lsinr = 2k T
. uh L
—sin—p—"

We will calculate the structure function (or the correlation function) of
the functions x and ¢ from Eqs. (5.35) and (5.36) for the values of turbulence

(Y
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scale & << L, i.e. o L.
u.

Because the essential area of integration extends to the values & <« 1 s
u

inside this region we will have g << L.

Considering then all the above sim~ .
plifying conditions we have: :
; - o . - ?
K WL\ - i
. 1‘ (unun 0) ==f (h. L———-—Sl I9 ‘
. F., (thss 4y, §) A€ ' (5.37)
B 'L
and F (4, Uy, 0) f(k. L +.;-“Sln-—r
. | VI (gt )+ G5 (5.38)

Because the function F, (uj, ug, £) decreases rapidly to zero for large

values £, the above integrals (5.37) and (5.38) can be extended from zero to
infinity without noticeable change in the values of the integrals.
And since (see Eq; (M)

m .
fl"y {1y, ttg, E) dE = a0, g 1t,) /16

where ¢ (0) represents the (three-dimensional) spectral distribution of the
structure function of the discontinuities of the refraction index, we have

o F (g, 1y, 0) == f

=k L .(z_-,iz. in22) . @ (o, ua ) (5.39)
Fo (g s 1t 0) = : \
’ w. I, ‘

== "k", L. ( +-—-—- 8 n-—l;-— » D (0, 1y Uy) (5.40)

In the present example where the field of the refraction index is con-
- sidered locally isotropic, we have:

¢ (uy, #2"“3). = ¢ (/ ui + u% + ug)
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Therefore: designating w= u3 +‘i4§ .
Foluy v14y00) = F,(u.0)

F (t¢g u..\o) = F'; {u.0) . D (0, Uy Uy) =.d'(u)

we have P
¥, (u, o) = akd. L( ——len —11—5> @ () N (5.41)°
and o
i k . wl : N
§ Fg(u, 0) = ak* L (W;ﬁstn ‘k ) @ () (5.42)

The above expressions relate the (two-dimensional) functions of spectral
distribution of the structure functions of the amplitude and phase fluctua-
tions of the electromagnetic field, on the plane x = const. = L to the (three-

dimenional) functions of spectral distributions of the structure function of
the refraction index.

The structure functions, therefore, of the distributions x and ¢ to be

found at the place of reception (x = L), will result from the relations (see
Eq. (K)):

.A“IJ‘l (e) ==. tx.(.l;,.y.z) —x (Lyy') 2))* =

==-4n fTI-—J.(ug)JFu(u. o) udu - . . (5.43)

[

and: D, (=[x y) = @i (Lix 3] =

=4z fw[l-—.fo(.ug) ]Fw (, o).u.. du - s (5.44)

]

 where: e = (y._y')’ +(=—'Z')’

. The correlation functions of the distributions x and-¢ will be respec-
tively: (under the condition that the field of the refraction index is homo~
geneous and isotropic for all scales of turbulence).

: B (e)-—z(L y.z).x(L. ,z) =

i

L)

= 2nf1.<ue>z= (s ) s, £ (5.45)

TR PR I SRR
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and:

”m (e)= o (L, Yrz) M (L ]/'o ) =

= 2nfl,, (v o) ¥, (u,0) udu - (5.46)
R

Replacing the values of F_(u,0) and F¢(u,0) from (5.41) and (5.42) we
obtain:

Bole) = w(Lyyz)ea(loy,7) =

= 200 Lf.l,(up) (1_._..33-_1#7.,.’. . & () udu

and B,(e)= o,(L. ¥, 9.9, (L, y 2) =

= 22%L fJ. (wo) (1~ ,[s:‘mu L) @ @du -

The mean square deviations of the fluctuatlons x2 and ¢12 to be found
will result as:
LW = Dy ()= ]
: :
Ry f (1 -—sln-—)d»(u) s [J)=1] |
l

: o

l
i . 3
L
:

and ?,— By (o)=

= Zn’k’Lf 1+~'—31rrf‘)¢’(“)“d“ : (5.43)

As is known (see Part A.), the function ¢(u) of spectral distribution

of the fluctuations of the refraction index determines also the equivalent
scattering cross section of the scattering volume V inside the solid angle
df, i.e.:

: do (6) = 24", k* ¥, 4':(21;'51&2—‘) a4l U (5.44)
or per unit volume !

dog (8) =221, k%, & (st_ing—-) .da (5.45)

We now apply, in the integrals of Eq. (5.43), the change of variable

-u = 2k sinQ .
i 2
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The variable u in Eq. (5.43) oscillates from zero to infinity.

The variable 2k sin £ takes respectively the values from 0 ...... 2k
(for real 0). The value 6f ¢(u) is almost zero for u >>u_. Therefore, in
the example under comsideration u >> u,, the upper limit of integration in '
Eq. (5.43) can be substituted by a number much greater than uy, e.g. % cor-

responding to 0 = -'g- . Substituting we obtain (for the amplitude fluctuationms,
e.g.) ’

-

#fy {1__ s;ix(dkaiﬂ%) . /17

D=2a"1L f
o 4kL sisg:—-

s (2ksin—§-’—) K510 d6

ov: considering Eq. (5.45):

. 90 :
; — "l T (4k Lsmzé—'> do, (6) . o
: a = an 1- 5 40 sil.d
; 4kLsi -—-—)
o : 2
. do_(9) . ' . .
The quantity Q... represents the equivalent scattering cross section

in an angle © inside the solid anglé df? = sin © . dO . d¥¢.

If we define dcl(@) as the equivalent scattering cross section inside
the solid angle dQ = 2 sin@d® which is limited by the conmes of angle O and
0+ d0, this will be given by : :

| ' de, _ do, . do,  0dO _ |
! dw_ ™ and . . @d@dqa — g‘
— da, 1
— 2n E
Therefore . §
e [ sir(4kLsi12—§-—) ’

=L Tem - do,(9) ;

, 2 A?) ' i (5-46)

As we saw in Part A (Eq. 16'), the dimension of the atmospheric nonhomo-
geneities ("clots") which create scattering in an angle O equals to

2(@) = —A | ‘The quantity then 4kLsinZ £ = 27 L, -—2—2\—-2 =2 -%L_;is pro-
ZSin? ' 2 A %9 24(0)

portional to the squaré of the ratio of the radius of the first Fresnal belt

to the diameter 2(€) of the atmospheric discontinuities which cause scattering
in an angle O,
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27AL \ -

sinl ~757
{ (-) ' . [r—.
The function of 1-———55%)—-3 gives a maximum for £(©) ~ VAL. 8o, as it
o)

is seen from Eq. (5.46), the fluctuations of the logarithm of the amplitude
are created by superposition of the scattered components 4o, (©) with different
weighed factors [see expression inside the brackets of Eq. (5.46)]. The lar-
ger weighted factor, as we indicate above, is given by the scattered compo-
nents which come from tropospheric clots of dimension comparable to the radius
of the first Fresnel belt.

In the case where the nonhomogeneities 21(9) are large compared to VAL,
they act not as-“'diffusers" but as "coherent" sources of partial reflections.

In this case:

T T2mAlL

’ 1*(6) . 2nd L -’l__l_ B sin
1 ,Slf("T(@—) =y 16 KL ’

s

T a

“aly
’ then o = ___g;_kl It fstLg— .‘d",l (9) (5.47)

o

The case (5.47) corresponds to the geometric optics.

In the inverse case (thg_yadius of first Fresnel belt is much larger than
the scale of turbulence) 512& >> 1, then Eq. (5.46) becomes:

(0

! .“h

i _ 1

@ :;";‘L'fd"‘(a)= 7ok (5.48)
[+

2

where ¢ represents the equivalent scattering cross section of unit common
volume.

This parameter determines, as it is seen, the per unit length reduction
of the electromagnetic wave due to scattering.
} -
Let us now return to the relation (5.43) and find another parameter (be-
sides o which was examined above) which could be measured experimentally for

expressing x2 and ¢% .

 For AL >> L, where L, is the maximum scale of turbulence
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A (1 _t..._k..s:l_n’-f-li-) Qi(u)wsf'(u) i

a | | %
but CAME B ()= f B (riur).r.dr
o . o .

where B(r) is the correlation function. of the fluctuations of the refraction
index.

(We are reminded that the spectral distribution of the fluctuations of
a "random" function and the correlation function of the above fluctuatlons
are related by the Fourier transformation )

From the above ensues:

Lo <
Fe fd=w L [ Byrdr [sinur) aw
[+ o «
. 0 1 - .
but- fsm(ur) dy == —= then - :
o ‘

— - -4 5.49
@ = ¢} = L fB(r).dr'A o ( )

As .an example:

Assume a turbulent field statistically homogeneous and .isotropic which is

described by the correlation function of the fluctuations of the refraction
index:

~ 2,4
B(r) = ni et/ (Gauss' field)*

where a is the (iﬁterﬁal or external in this case) scale of turbulence.

*Systematic experimental verifications (see, e.g., J. Grosskopf "Fading Inves—
tigations for Tropospheric Propagation Paths" Proceedings of Commission II dur-
ing the XIII General Assembly of URSI, London, 1960) show that the correlation
function of the fluctuations of the refraction index is now correctly written

as B(r) ~ exp (- ™. For small values r we have:
a .

I Blr) ~=—1— (—-g—)n . log {I—B (r)} = nlogr—mnloga
. d{log[1—B(»M]) _ Y

then —(—%‘[&;‘,7;:{(—)1‘ =n and &= ’"/V 1—L(r)
- The determination of B(xr) is achieved experimentally by determining‘the value
r_ for which B(r,) = 0.9, the above relations give the value n (depending as

experimentally proven on the frequency and varying between 1.3 ~ 2.3) and the
corresponding value a of the scale of turbulence.
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! The corresponding function of spectral distribution of the scale of /18
turbulence &3 = Zw/ul will be:

u?n?
—t

‘ll
Plu) = <€

The above conditions are sufficient for the determination of ;Z and ¢1?

In fact, (see Egs. ‘5.41, 5.42)

ok 1wl R0
— ‘“'°’ -z "t“"*‘L(‘““zsm L ) -
- and.
=R et (14 sl E) (._1‘_9_)
. F, (w0)= Vi u3 a®krL 1+u,L81n i) exP )

then: { By(e)=

<
= 2n f Jo (16,0) F, (u, 0) udu }(s-ee 5.43, 5.44, 5.45)
1+ : '
o] <
= 2 f F (wo)udu =" i

. .
N . 5
o L :
; uia?

- o _wia? ;
,=Y-£‘—‘;fa'k'Lf<1--—£—-shﬂ) e Yudu -

LA k ,
!
: y) |
| - ofop e\ ||
and’ P I ) —_— ke
i = B ny a. k'L 1 rya
ka?

4L
ka?

/ 4L
- Vo — rof 6@ 7]
¢f='——2£- n} 4. kL Ve e

e A mvemeee e

Let us now examine two basic examples depending on whether the expression

T=AL—<1 or T>1

kaZ =
L, i
Example 1) T <<1 or L << JZLi._ = critical)
_ _ _— — g
In this case -%- ta% T=1l- -';3- and xz = 8/n n:% l‘-g (independent of

 frequency) .
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= /rn? ak? . 1L
A1 Th e

(These results correspond to the case of geometric optics).

1 -1
>> >> , - << .
Example 2) If T 1 F L(critical) and = tan T 1  then:
™ T4 - 4
X% = ¢% = —fi‘n% K2 a.L= 22 /n . E% . aL
A

Conclusions: The statistical analysis of the phenomenon of microwave
scattering in the troposphere was given above for the geometric optics approx-—
imation and for the general case of obtaining solutions of the wave equations
with the help of the theory of "small" and "smooth" disturbances by Kolmogorov.
In:the first part the elementary equivalent, scattering cross section in an
angle © was calculated and it was proven that this angle acts as a "filter"
allowing the superposition of a minute number of spectral components to con-
stitute the received signal in the above angle.

We also attempted to give a physical interpretation of the manner in
which the turbulent condition is being created and developed according to the
theory of Kolmogorov-Obukhov*., In the second part the problems of amplitude
and phase fluctuations of the received signal was examined from the point of
view of correlating these, on one hand to the fundamental parameter of the
equivalent scattering cross section, and on the other hand to the frequency
of radiation, the length of coupling and the spectrum of turbulence.
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APPENDIX

THE MEANING OF THE ENERGY DISTRIBUTION FUNCTION
OF THE SCALE OF TURBULENCE

1. Let us consider, for example, a time function £(t) "random" and not
necessarily statistically stationary (which means a function the character-
istic components of which do not change after the time the phenomenon
recording begins). It is known that stationary functions are described by
their autocorrelation function B(t) = f(t)-£f(t + t), which gives the
fluctuations of |£(t)]|2.

In order to describe the nonstationary functions (which are mainly
encountered in the turbulence theory) in a somewhat statistically analogous
manner, we use instead of B(t), the so-called "structure' function of the
function £(t) which is expressed as D(t) = £ (t + 1) - £(t)% = [£(t +1)]%+
[£(t)1% - 2f(t + ©) £(7) = 2[B(0o) ~ B(1)], proposed originally by Kolmogorov.

The basical thought for this is that in cases where f(t) is nonstationary,
i.e. £(t) changes with time, if we consider F(t) = £(t + 1) ~ £(t) for values
of t not very large, small changes of £(t) do not influence F(t) which now
can be considered as stationary. '

Since now B(T) constltutes the Fourier integral of the spectral
distribution of W(w)

: o, o ,
"Bx) = f e W(w) do = f ovw (@r) . W(w) dw |

—

we will have:

DUL-Z[U—meﬁ)MK@dm

If, on the other hand, we call ¢(w) the spectral demsity of the spectral
components of £(t), i.e.

»

ol :
o = e ol do
R T we will have:
'I’(wi) ‘P*("’z) = (“’;" W:) W(w,) dw dw,

. relation which relates the mean spectral den81ty of the fluctuations energy
of £(t) to the spectral -density of it. The function §(w) is known as the
Dirac function. '

* W(w) represents the mean spectral density of the energy (power) of
the fluctuations of £(t).
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2. Let us come now to the examination of "random" functions of three
variables ('random" fields). Examples of such functions are the field of
the wind velocity in a turbulence atmosphere (vector), or the humidity fields,
temperature ete. (scalar) inside the same medium. For such a field £(Y¥) we can
also specify the correlation function: )

LI 22 (£ - (T Pl EE) - £&)]

If the field is homogeneous, B(¥;, Ty) is a function only of the
difference T] - Ty, and if the homogeneous field is also isotropic then

2 B(ry, 1) = B(|rp - T2 ).

3. We will deal espec1ally with the examination of the field of the
wind velocity = which is responsible for the creation of turbulence in the
tropospherel, and, therefore, the field of the refraction index.

This field creates stratification of the turbulence from the (maximum)
scale Lo to the (minimum) ZLg.

The regions of dimensions L, which appear as results of the instability
of the original flow, are naturally nonisotropic as they depend directly on
the geometrical peculiarities of the flow. These conditions though do not
affect the clots of high order of turbulence % (in the region 20) and,
therefore, we can consider their regions as isotropic. Since the ' clots' of
dimension

1>>lr1 - rzl
do not influence the velocity difference
v (r;) = v (ry)
we can consider that, for differences]f - 52] not very large, the above
velocity difference w1ll depend only on the 1sotrop1c regions of turbulence

2i% %,: we say that the field ¥ (T) is "locally" isotropic.

Since the field ¥ (r) is a vector field it will be characterized by' /20
nine structure functions (instead of one) of

(r) = (vy = v§) (vy = vs 2

where i, j = 1, 2, 3, vy represents the component of thg w1nd velocity at the

(1) The development will be based on the theory of Kolmogorov-Obukhov
[15], [16] which today receives the larger percentage of experimental
verification in relation to others which similarly describe the turbulence
spectrum in the troposphere [12].

47



point ¥ with respect to the axes x, y, z and vi its components at the point
T'=1r + Tr.

Due to the local isotropic character of the field (Landau "Fluid
Mechanics", p. 124), the tensor D;. depends only on ¥ = r, the unit tensor
6ij and the unit vector ny in the 31rect10n Ty

We will have, i.e.:

Dij = A(r) Sij + (r) ng ng (1)
Let us now place the coordinate axes so that one of them coincides with
the direction @, and v, and V¢ are the projections of the velocity v; in the
direction n_and Berpendlcular to it. So the component Drr will be the mean
deviation (vy = Vrl of the velocity in the dlrectlon 1 and between the points
-1-‘1 and
ri =F+ 7,

while

= - v!)2
Dtt (Vt Vt)

the deviation corresponding to the plane which is perpendicular to the
direction B (v, the velocity at the point T, in a direction perpendicular
to © and v{ the value corresponding to the point

Fl = T + D).

The components D.. and D, are the longitudinal and "transversal" structure
functions of the fleld v%r) respectively.

Since ny, = 1 and ny = 0 we have from (1)
Dyy = A(r) + (x) (2)
and Dyy = A(1).
As a result:

Dy (r) = [Dppe(r) = Dpp ()] ny oy + Dee * o4

ij 3

In the case where the velocif& v(r) is small compared to the velocity of

sound (condition which is usually fulfilled), we can consider the fluid
(atmospheric air) as noncompressible, i.e.:

divv =0 and then aDij = o ¢ Substituting in (1) we get:
axi
» 1 d
Dee =77 + a8 % * Dry) @
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So, the tensor Dij is determined only from the component Ddt or Drr‘
Assume initially that
Lo >>r>>2.O

(where zothe internal scale "cut-off" of the turbulence and L_ the scale of
the larger - nonisotropic - "clots" of the turbulence spectrum?. '

From the above we see that the velocity differéence between the points
r1 and r{ = ] + r will depend basically on the clots with dimensions
comparable to r. As we developed in paragraph 2 of the text, the only
parameter characterizing these clots is the energy which is transformed into
heat per unit time and mass of the atmospheric fluid, from one class of
turbulence scale to the next higher.

This loss of energy we called s. We conclude then that the structure
function Dyy (r) will be determined only from the independent variables r
and s. D, (r) has dimensions of velocity square. It is easy to prove that
the only combina;ion of r and s which gives the above dimensions is the
quantity (s.r)?/3 and that it is impossible to find a combination of r and
s which would lead to a nondimensional quantity. This means that D..(r) will
have the form

Dpp(r) = C(s.r)?/3

- where C is a constant.

The above relations could be proven also by the observation that

n D.(r) =[ve(r, + 1) = vp(x )]
is mainly due to clots of dimension r, i.e.

Doy () v v;?
But as we show in paragraph 2: 'vr'b(s.r)l/3 and then
D_.(r) v (s.r)23
The quantity Dy (r) is determined from the relation (2):

Dip(x) = é_C(g.r)zys (Dpr = & Dyp)
3 3

Assume now that r <<.Q,d

In this case, due to the assumed (Kolmogorov) statistical balance of
the region of scale £, , inside these clots the flow will be laminar and,
therefore, the velocity variations between points at distance r will be
smooth: this means that the difference v,.(f;) = V(¥ + ¥) can be

expanded in a power series of r and, due to its infinitesimal size, we will
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have:

| vr(rl) - vr(rl +T) =38, T
where 3p 1s a constant vector.
Therefore:

2

Dpp(r) = ar and Dip(r) = 2ar? = dD

Y

We will now determine the constant a:

Expanding the relation

- — 1y, -y

we get (having in mind the local isotropic character of the field)

Djg = vivy + vivﬁ - Vivy -

Similarly, due to the local isotropic character and homogenity of the
field we will have

]
ViV'}

svs = viv! v o= vive
Vivy = Vivy and ViV = Vivy

hence:

Dij = 2[vivj - vivjl (3)

Combining now relations (1), (2), and (3) we acquire:
2
vivg = ViVy - a.ur g4 +5rarse ming

Differentiating this relationship we get:

L ov, .oV, Cov; av, ’ %)
g e iy 17 WA P P ———
R ax[ axl ll . Bxi

In the above relations it was taken into account that due to the viscosity
of the fluid, different points of it have different "internal' velocities
(vy, vi) to which, since the fluid from the viewpoint of external turbulence/21
scale o is, as a whole, in motion, we must add the transfer velocity of the
regions with diameter

2:%Lgs V% Ve .
]
The coordinates (x4, xé), (x,, x ,) denote respectively, reference systems
inside the regions of “internal" motion and the regions of large turbulence
scale ~L.
Because relations (4) are valid for arbitrarily small values of r we

can put xg -«xi then:
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' e FPamaeT
av. \* — L
<___.L.> = 15a and ox,  ox =0 4)'

It is known (see e.g. Landau "Fluid Mechanics", par. 16, p. 53) that the.
mean dissipated energy, due to the fluid viscosity, will be equal to:

e —,1-)— (—i‘-> (gradv)?
2\e
where v is the total velocity of the fluid of external scale L,, i.e. the
sum of the velocity that corresponds to the internal relative motion of
turbulence of small scale 2v&, and the velocity corresponding to the turbulence

of external scale L,, u is the coefficient of viscosity of the fluid andp
its density.

: x=.——L<..‘“_> [iz‘— +f—‘:-’-]l=
I.e.: 2 e ax, ' ox

: v\ av,. oV, - e
,::(..".f. .....-)+-——-l- .——’-J: 15a(-!-‘-)
. \ Q Bxl 6x, axi e

then i

15 I »
(%)
therefora Dﬂ' (1‘) - :T]g -—;“—— r' .. ('r << Io)
| (%)
. ) .
and Dyl =155 753 " (5)
(&)

Therefore, we achieved the determination of the longitudinal and
transversal structure functions of the field v(r) for the cases where

zo§< r<<L0:

D (ry=C.s.7r - ' "
. 3
.Du(")=“g‘-c-¢:” .

and r<<h (5)

The structure function D..(r) is represented in fig. 3 below. For small
values of r ("cut-off" region the curve follows the parabolic law a <rZ2 up to
the value r = Eo(mlnlmum turbulence scale) and then the law

c

Gl
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which is considered valid for values
}?,'o<<r<<Lo

The value £, is determined by the point of intersection of the curves

:-J_.L~_ r’ - and C ..:I.l r’/l‘:{
, u - iadh A e
15(.-) . :
sNel
and it is equal to: ) i
(150. -.—Q-) .

&

4 l°=

Since now the distance r between the two points in the troposphere
considered increases, :

A

o(r) S N
2 D= const.
pur /3

i

]

|

/ D"ri

lo L !

" o)

Fig. 3

the condition r<<L, is no longer valid (the clots for which
Lo pR Y

cannot be considered homogeneous and isotropic). In this case, the
continuation of the curve for large values of rv L, ceases to follow the
asymptotic law (dotted line) and "shows saturation effect'" from the point of
view that, for 2> L,, energy exchanges inside the fluid do not exist; it
then follows a more or less linear motion absorbing, possibly, energy from
the surroundings (e.g. sun energy).

4. After the calculation of the structure function D(F¥) of the velocity
field v(T¥) of the fluid, let us now determine its energy distribution; i.e.
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find the function which gives the kinetic energy of the clots at each case
relative to the corresponding turbulence scales 2; of them. The calculation
of this function is very essential because, as we have seen, this function is
the only one which enters in the determination of the power related to
scattering, equivalent scattering cross section, of an electromagnetic wave
propagating through the considered turbulent atmosphere.

It we designate ¢ (i) the function of the epectral distribution to be
determined, where

(the turbulence 24 plays the role in this case "of space period", hence the
variable u; represents the respective component "frequency' of the spectrum),
according to the development of par. 1 of the present Appendix we will have:

P - ] -
‘D(r)= 2 fff[l—ow(‘z_c 7)] (). du /22
' -0

Under the same definition, the tensor of the structure function D, J( )
will give:

: 0 : _ _
. . - b . D ) du
‘;Dij (»)—ZI—J;I[I uw(u1)l SIu.(u) w (7)

where ¢,.(u) will be the tensor of the energy distribution of the velocity
field v%r

The form of this last tensor o (u) is determined on the basis of the
same reasoning with which in the prev1ous paragraph Dy (r) was expressed,
i.e.: ' R :

Dy () dnhadh ¢ &y (W=
= Gy uy; FE )y (8)

where G(u), E(u) scalar functions of T .

From the equation of the noncompressible fluids (for velocities ¥ (%)
negligible w1th respect to the sound velocity), it follows as in the prev1ous
paragraph: e

. 9D;; .
. ox; =0 - and by substitution in equation (7):

fffﬂ#(u.r)u diu(u)du_o i. ;.;qu (u) =0

e ew e

Replacing this relation in (8) we have:
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G(u).uB.ui+E(u) .ui=O or

G(u) = - E(u) then:
u

@ = (0 - 530 EW

and (7) gives:

i e (- 22)

. L (u) du

To give the physical meaning of the function E(u), we will assume for
a moment that the velocity field v(¥) is isotropic and that the tensor of
the correlation function of it Bjj exists, as well as the structure function

of D, .: o
+J ' @ W U -
=] [ for@n (1= £
C =0 . S
in the case of isotropic conditions

6ij ‘S:Li = 3 and uju; = u

hence:

f’Bu'(;)-—"-fffow(;;).?:E(u).d;. -:Aldt'r'-:O'L:
- A .

For r = 0 we get: :

:l--i‘—fff““) -,

I

Therefore, the function E(u) gives (in a three-~dimensional vector space)
the spectral distribution (i.e. the distribution per scale of turbulence %: )
of the referenced (per unit of fluid mass) kinetic energy.

“ We will calculate the function E(u) in our case where the structure
function of the velocity field follows the "two thirds' law which was found by
the theory of Kolmogorov-Obukhov. '

We have: (for the isotropic case)
. - £

: s )
Dy ()= 4. —avr(ur) | £ (u) du:
'D"(’z_ 4]:_[0‘[ {‘l our (u r)} L (u) du
But from (1) it follows:.

Dii (r) = Drr(r) + ZDtt(r);
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Substituting

»

Dypp(r) = C. s2/3 p 2/3 and Dee =4 ¢, 2/3 p%/3
: e

we get:

1 % % ” ' — N
—3~C.s 7 ::4fff [l—aw(u r)] cE{uw). du,
f“ .00 . H

from which it follows:.
E(u) = A. 7/8 4-11/8 (8) where A is a

constant equal to:

v 8 7
() ey

A4=0C. 24 n

= 0,05 .G

[where T(8) is the known gama function determined as
3

: 2 —t Z=l
L) = fc .t dt (Rez] > 0)
.. '

with basical property:
I'(z+1) =z . T (2)

The function E(u) (or ¢(u)) is shown in fig. 3 together with D(r). The
law of wvariation

a(u)n w1173

is followed inside the region "of energy exchange"

where D(r) follows the "two thirds" law.

In the small scales fof which

u 221
2

®(u) decreases quickly (according to a get unknown law due to the fact that,
owing to the viscosity of the atmospheric region under consideration in which
the propagation takes place, the turbulence scales of the order 2;<f are
expanding more or less "abruptly" into heat, the kinetic energy tran8ferred
by the larger scales.

In the large scales for which
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ﬁlg

o

¢ (u), depending exclusively on_the special conditions of large scale flow,
does not follow a concrete law™ but remains almost constant ("saturation"
region) due to the relative energy stability of the regions 24"V Ly-

The problem which arises at this point is the possibility of experimental

<exam%nation of the power for the real atmosphere) of a proposed model /23
o (u)4

It would be necessary then for the function ¢(u) to enter in the
calculation of magnitude, easily measurable and easily distinguishable from
other coexisting parameters.

In such a magnitude the received, due to scattering, power will be
examined at the receiver for a radioelectric coupling occurring inside
turbulent atmosphere. Whether the considered coupling occurs under line of
sight contact or beyond the radioelectric horizon will have, as we will see
below, as a result, some modifications on the general relations to be examined.

Let us begin with the relation, which was found in paragraph 3 of the
text, between the equivalent elementary scattering cross section and the
spectrum of energy distribution.

This is: 64n’ 64.a° an ii)
0=—..1~‘L Plu) = —— q'("')."'”‘ 5

At

We are reminding that o gives the received power due to scattering per
unit density of incident power in the scattering volume per unit of solid
‘angle and unit of common volume.

Let w be the transmitted power. The energy demsity at a point of the
common volume at a distance R, from the tramsmitter will be

4HR§

where G is the gain of the transmitting antenna equal to 4TIA

(1) Due to the same reason it is also not possible to determine the
constant C but only under special assumptions [5] of ambiguous power.

(2) Here we will refer to the simplest "static" indirect method, for
radioelectric couplings, which permits the determination of the spectrum in
percentages of large time intervals of continuous study, and not the method
by electronic refractometer [8] which permits the direct determination of
B(¥)s ‘
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where A is the equivalent surface of the antenna. The per unit of solid
angle, scattered power from the volume element dV will be:

® C4TA . & . AV
4nR§ A

and the received, at the position of the reception antenna (which is similar
to the transmitting antenna), element of power will be:

where R, the distance of the volumeée element dV from the receiving antenna.
Integrating on the entire, common scattering volume we get the total

received power due to scattering

P = w. A? § dv
22 J RZ.RZ
v °

It is common in the calculation for the above power to be compared with
that which would be received in free space (i.e. in an isotropic and
homogeneous atmosphere).

The power for free space coupling as it is known is

Po =w (4IA)2 () _ )%= w _AZ2
(A2) ° (4md) A2d2

where d is the distance between transmitter and receiver.

We will accordingly have: PP fa(a.l) ';iV=£

e OB
P = R ,
e v o

4z 2] "
@ (“VF——)

64nt A 2

- . 42 i i o,
At d BE.R’ av R (9)

- A T

‘In the case of isotropic turbulence:

\
s

P _ a2 av
Po d=. &f Rng

If the coupling is of large length and beyond the horizon:
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=3
is
T

O ==

and then
P 165 .v
P, d? H

Let us calculate the order of magnitude of the mean scattering wolume Vu:
In a case for which the opening of the main lobes Q of radiation of the
antennas used is smaller than the angle 6

]

d3ns
Vuv =55
. : d
Therefore: P 253 al
P, ;
But
4

Rf

where R¢ is the equivalent transformed radius of the Earth, determined from
the equivalent mean slope of the refraction coefficient inside the coupling
region.

Correspondingly:

2

P
X R 3 3
Po £.6 « Q% & RE , S}? . Q (U), (10)

In the case now of line of sight contact, we must consider the scattered
power in all directioms: '

I = [6.dR
b

The scattered power for length d (of the coupling length) will be
' _E-d
. P=P . e
where Po the power in free space. Tﬁerefore, we will have at the receiver,
power arriving due to scattering:

zd

P=7Py(l-e" )=P, [Z.d+1 (2.d)2 + ....]

2
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For L.d=<<1
(Born Criterion - scattering "weak')

Pq “Po +I . d

or more accurately, taking into account the reflected beam on the Earth's
surface (coming from the radiation pattern which is located below the line
between transmitter and receiver),

Pd’\’Po-Zod.q
where q is the reflection coeffiéient of the surface.

[By assuming, for example, turbulence spectrum of Gauss' form it follows

1 y l
A 2; (-‘-’-}—) dn ca:p[ (2"1 n4ed .Q_}

L24

2;:1/4 >> 1) )

. —

t
and > -:;.%_} ane. 1 (for

where % is the mean scale of turbulence and An?, the mean deviation of the
refraction index. Hence:

We observe, i.e. that the scattered eomponent received decreases as dfl
while the direct component in free space, as d-2 beyond the same point
(or above a certain region) direct and scattered components combine at the
receiver with comparable magnitudes. ]

Assuming now.the spectrum of Kolmogorov—Obukhov

o T T ()
’_ SR TAA LR
and substituting in (10) we get: ,
b{)" *‘n n"z."c-lu." ‘/'*"9'7 l' " “:h(“)i (a1
The relation (11; shows a depéhdence ' )
31/8

between the received power and the wave length, as long as we have assumed the
above spectral distribution.

The experimental verifications though [14] (in networks both beyond the
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horizon and line of sight contact) show that there is not only one dependence
A=K but, depending on the geometry of coupling and the season and the time of
the experiment, the parameter K fluctuates approximately between =3<K<3

for couplings beyond the horizony and decreases monotonically [13] for line of
sight couplings.

A presentation of this differentiation together with related experimental
data of the above Greek atmospheric area is given in one of our recent studies
{13]. One could say accordingly that a relation of the form

¢ (u)vu~® (12)

is not valid at all times for the same x, which means that, because in the
same space the only parameter which changes the received power in a given
radioelectric coupling in time is, in the last analysis, the turbulence scale
2;, the exponent x must be different for different spectrum regions

2,0<<,Q,i<<L0

Substituting in fact (12) in (9) and assuming that for the same coupling
we use simultaneously two wave lengths A} and Ag9 with proper antennas so
that, in both cases, the common scattering volume is the same, by comparing
simultaneous mean values of reception we obtain:

B o Q¥4 (13)
P(A2) (A2)

The simultaneous experimental verificationsgive x-4 between 2 and -2, i.e.
+2<x<6 meaning spectrum ¢(u) inside the region of energy exchanges

@(u)%u'z until o (u)w u_6

The above reasoning though is not absolutely correct because it is based
on the assumption that the only propagation mechanism of the electromggnetic
radiation through th% troposphere is the one of refraction (of scattering) by
the turbulent regions #; and, furthermore, that in this last case the only
mechanism of transfo%mlng klnetlc energy into heat is the one of the fluid
viscosity and that the turbulence strength is constant, leading always to a
scale of cut-off -2, of the same order of magnitude (mm).

It has been known for some time though (Friis, Crawford, Hogg. Voge,
Du Castel, Misme) that in the troposphere, the tracking (by radio sounding
and electronic refractometers) "of foils" regions thermodynamically stable of
large horizontal dimensions (a few km) compared to the vertical dimensions (a
few m) which are characterized by sharp vertical slope of their refraction
index relative to the mean slope of the surrounding (turbulent) space, is
possible. Each of the "foils" creates a partial reflection of the incident
wave. :

For a "foil" of infinitesimal thickness corresponding to a small
‘discontinuity dn of the refraction index, the reflection coefficient will be
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dr = dn
2a2

where a is the incident angle (avzv of the order of a few mrad). For a

L d
"foil" situated at a height z of small thickness h, the reflection coefficient
r is the Fourier transformation of the change of slope

dn(z) = g(z)
. dz
of the refraction index inside this "'foil":
>z-'i-h( ) e . . . -
g(z) =—idke : 2 2n
Sae . ds where 1,‘_____;.,"“,.,..1_“.

7
N

(2kz: coefficient which takes into account the phase difference due to
reflection).

Obviously, the value of r depends on the form of stratification g(z)
inside the "foil".

If, for example, we assume linear variation leading to a difference
§g of the slope of the reflection index through the thickness h of the
"foil", we will have:

. 39 —-j‘—-’-;—n(l-i‘h),
r= g A.e

This relation is valid as long as the horizontal dimensions of the '"foil"
are assumed to be infinitely large and plane. Given though, the experimental
verifications leading to finite values, L, of horizontal dimensions and, in
the existence of fluctuations of their separating surfaces, the coefficient
r must be multiplied by a factor which will take into account the relation of
the dimensions L, to the corresponding dimensions of the first Fresmel belt,
which constitutes the cross section between the first Fresnel elipsoid with
focal points, the ‘transmitter and the receiver and the reflecting surface of
the "foil", as well as, in fact, the separating- surfaces not being smooth
in which cases, the Rayleigh criterion is not fulfilled. If d is the
distance between transmitter and receiver, the dimensions of the above Fresnel
belt (ellipse) will be

—

vid

(transversal) and

/Ad
a
(longitudinal), (where at the incident angle in rad).

For wave length A of the microwave region we usually have ! [25
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/Ad< Lo<V/ Ad
a

hence the reflection coefficient r becomes:

So, the contribution of each "foil" will be manifested by one "elementary
referenced reflected power"
' 1'5 i —g i 3 —
it = (g L T Y
. . — — {

va.d.

of phase difference

8l . h.a

¢ = A

relative to the incident power on the "foil". The total contribution of
power, due to the mechanism of partial reflections of the atmospheric "foils"
of different thickness, horizontal dimensions, and altitudes, will result from
addition of the individual elements of power o,(h)(taking naturally into
account the phase differences‘'at each case).

Therefore, the received power, relative to the corresponding power in
free space, will be:

.’P ‘; ‘ 5
=N o, (h) * or e d a2 (14)
P £ h 0

2

dadtd}”

*More accurately, it will be: .
oA

EPI‘IPQ=2

where d,, d, are the distances from the transmitter and the receiver to the
point o% geometric reflection on the "foil" under consideration and:

o
R

, 4n —Jic.b1 3 ,
.a°x=-;'—;—l.f e .r.ds]‘ where
! ’ 8 .

>

and 8% is the difference in the path (dj + d9) = (di + dj) between the point
. of geometrical reflection on the "foil" and the center of the next elementary
surface ds of the '"foil". The above expression must be taken into account when
we are considering "foil" of large horizontal dimensions and of wavy separating
surfaces.
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‘ From relations (11) and (14) it is obvious that the two mechanisms,
scattered and partial reflections, lead in comparable results to the order of
magnitude of influence of the main coupling parameters, i.e. the distance and
the frequency. In the case of the mechanism of propagation through regions
of turbulent atmosphere, the nonisotropic character of the medium brings
only slight modifications in the facts resulting from the assumption of
isotropic turbulence, due to the fact that the vertical and horizontal
dimensions of the clots under consideration are similar.

In the case of the mechanism by partial reflections, the horizontal and
vertical dimensions of the 'foils" considered differ by many orders of
magnitude and naturally play completely different roles.

In the case of scattering, the limits of the turbulence scale inside
which energy transfer occurs, (i.e. turbulence) 21M, and 22< Lo are of much
different order of magnitude (£1%1 mm 25%100 m). As a result (11) indicates
that the magnitudes f7........%9, for a given coupling length d or 6, are
comparable to the wave length A. We conclude then that the ratio P must

P
depend on the same law (the same x) °

P~

—

Po

for a very large frequency region, which contradicts the experimental
verifications [13].

In the case of partial reflections on the contrary, the corresponding
limits are very much different: Primarily, the range of the thickness h of
the different "foils" (which varies from a few meters to a few meter decades)
must be compared to the phase difference :

40 . a . h'
A
i.e. to the magnitude A.
a

On the other hand, the horizontal dimensions L0 of the "foils" (of the
order of a few km) must be compared to the axis.of Fresnel ellipse

vV A.d and Vi.d/a.
Therefore, the dependence of the received power on the wave length, in this

case, must be much more critical, a fact that justifies the spread of the
parameter X in the formula ’

ROY) . QW
P(A2) (A2)

without necessarily this spread being caused by a corresponding change in the
form of the turbulence spectrum.
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Finally it is worth noting the fact that the experimental (from the
morphology of the variation patterns of the received electromagnetic field im
each case) separation of each of the above propagation mechanisms is rather
clear and simple: 1In the case of scattered signal due to turbulence, the
statistical nature of the propagation medium is expressed twice: a) by i
introduction of the energy spectrum ®(u) (or the correlation function B(r)
of the refraction index fluctuations) directly in the same elementary (refer-
enced) power of reception 0d(6,)A) (the equivalent scattering cross section)
and b) the integral which comes after od(6,A) for the calculation of
P reception, taking into account a second statistical distribution of od(8,A)
in space (received 81gnal made up by a very large number of components of
random phase). .

In the case of a signal from partial reflections, the reflection
coefficient of each atmospheric "foil" contains its own phase and only from
the addition

of the respective elements of reflected power the statistical character of
the phenomenon appears (once). Reception signal made up by a very small
number of components of random phase.

According to the above developments though, the dependence of the
received power on the wave length, through the troposphere, is not expected,
theoretically, to .have range greater than

_1/2
A Al

This disagreement with the above developed, experimental verifications for
beyond horizon couplings v

(—r2.....0%)

';

could be removed f% tﬁg’scale of turbulence of cut-off Z26

\ V(u/v)*f

would remain for a sufficient percentage of the observation time in the meter.
size or the 100 m size region instead of the mm size region. In this case the
curve ¢(u) would be separated in two main branches from which the second (which
refers to the values %;V&,) would be decreasing much faster than the first,

and for a scale interval Afcomparable to that of the first, which would justify
the experimental results. Large values of £, correspond to very small values
of expanded power per scale of turbulence due to the viscosity o. Very

small values ¢, though, denote either a corresponding weak turbulence or a
faster reduction in the density of the kinetic energy, towards the smaller
values 2.

'The last assumption results in a progressive "absorbtion" of kinetic
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energy by some mechanism different than the one of the viscous forces. What
type of mechanism is this? According to an assumption [Bolgiano 1952] which
is verified very satisfactorily by experiment, the retarding forces on
moving clots inside atmospheric, thermodynamically stable "foils' [9], which
force these clots in a damped oscillation that brings them in the original
state of equalibrium, transform part of their kinetic energy into potential
energy, on a scale of many orders of magnitude higher than o. The above
retarding forces increase with the magnitude of the corresponding clots; the
above mechanism, therefore, (which produces an increase in slope of the flrst
left member of ¢(u)) shows basically in the high nonisotropic (due to
"layerlike" nature of the surrounding) scale of turbulence.

In conclusion: the form of ®(u) is subdivided into four regions;
the region of "inertia" 2;%&,, the region "of retardation" in which the kinetic
energy of the corresponding scales is absorbed by the viscous forces of the
thermodynamically stable fluid being transformed in potential energy, the
region in which the energy absorbtion occurs, in frictiom energy quantities
o and finally the "cut-off region" 2;%&,.

Translated for National Aeronautical and Space Administration by
International Information Incoxporated.
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